
A System for Efficient High-Recall Retrieval
Mustafa Abualsaud, Nimesh Ghelani, Haotian Zhang, Mark D. Smucker, Gordon V. Cormack, and

Maura R. Grossman
University of Waterloo, Ontario, Canada

{m2abuals,nghelani,haotian.zhang,mark.smucker,gvcormac,maura.grossman}@uwaterloo.ca

ABSTRACT
The goal of high-recall information retrieval (HRIR) is to find all
or nearly all relevant documents for a search topic. In this paper,
we present the design of our system that affords efficient high-
recall retrieval. HRIR systems commonly rely on iterative relevance
feedback. Our system uses a state-of-the-art implementation of
continuous active learning (CAL), and is designed to allow other
feedback systems to be attached with little work. Our system allows
users to judge documents as fast as possible with no perceptible
interface lag. We also support the integration of a search engine for
users who would like to interactively search and judge documents.
In addition to detailing the design of our system, we report on user
feedback collected as part of a 50 participants user study. While we
have found that users find the most relevant documents when we
restrict user interaction, a majority of participants prefer having
flexibility in user interaction. Our work has implications on how to
build effective assessment systems and what features of the system
are believed to be useful by users.

CCS CONCEPTS
• Information systems→ Information retrieval;

KEYWORDS
High-Recall; Electronic Discovery; Systematic Review
ACM Reference Format:
Mustafa Abualsaud, Nimesh Ghelani, Haotian Zhang, Mark D. Smucker,
Gordon V. Cormack, and Maura R. Grossman. 2018. A System for Effi-
cient High-Recall Retrieval. In SIGIR ’18: The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, July 8–
12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3209978.3210176

1 INTRODUCTION
The objective of high-recall information retrieval (HRIR) is to find
all or nearly all relevant documents. Example applications of HRIR
include electronic discovery (eDiscovery), systematic review and
construction of information retrieval test collections.

Baseline Model Implementation (BMI) – a version of CAL (Auto-
TAR) – is the state-of-the-art approach to high-recall retrieval [2, 3,
5]. CAL uses a machine learning model with an iterative feedback
process to retrieve documents. Our work builds on BMI.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5657-2/18/07.
https://doi.org/10.1145/3209978.3210176

Figure 1: A high-level view of our platform architecture.

We demonstrate a platform for retrieving and assessing relevant
documents that provides high data processing performance and
a user-friendly document assessment interface. The platform is
designed to increase assessors’ assessment performance and thus
reduce their review effort.

The performance of the platform was evaluated by 50 partic-
ipants in a user experiment. In another work [10], we report on
the design of user study and show preliminary results from the
first 10 participants. In this paper, we show the data-processing
performance of our platform, how it works, and how it is used and
experienced by users.

2 SYSTEM ARCHITECTURE
Figure 1 shows the architecture of our platform. Our platform is
composed of two different retrieval methods, CAL and Search. CAL
automatically presents the user with documents based on amachine
learning model, whereas Search allows users to enter queries and
retrieve lists of documents. The platform server, as shown in the
Figure 1, is responsible for displaying the document assessment
interfaces to the user, configuring the system, and communicating
requests and responses to and from each component. The types of
user interactions that the server allows are:
• Set or change the topic of interest;
• Set seed query for building CAL’s initial machine learning
model;
• Search for specific documents using Search;
• Assess documents retrieved by either Search or CAL; and

https://doi.org/10.1145/3209978.3210176
https://doi.org/10.1145/3209978.3210176
https://doi.org/10.1145/3209978.3210176

(b) Navigation Buttons
Users can click on the magnifying
icon to switch to the Search compo-
nent or the light bulb icon to move
to the CAL component. The archive
icon takes the user to a page that
contains a list of all judgments
made, where users can export their
judgments to different formats.

(c) Document Title
The title of the document from the
data collection

(d) Paragraph Excerpt
A selected paragraph by the modi-
fied CAL model. The model selects
the most-likely relevant paragraph
from the document as a summary
of the document.

(a) Topic Description
Clicking on the text will display a
pop-up of the topic statement of
what is considered relevant. Users
can also create their own topics
and their statements.

(h) Keyboard shortcuts
Users can make their judgments
using any of the pre-defined key-
board shortcuts.

(g) Judging buttons
Three buttons corresponding to
3-level relevance scale, not rele-
vant, relevant and highly relevant

(f) Highlight keywords
Users can highlight keywords by
entering them in the search bar.

A list of all previously made judgments from
the CAL interface. Users can modify their ex-
isting judgments by clicking on any of docu-
ment titles. Once clicked, the document will
be displayed again to the user.(e) Show full document

Users can view the full document
content if they wish. The content
will be displayed below the para-
graph.

(i) Undo Judgments

Figure 2: The continuous active learning (CAL) user interface.

• Export judgments sets.
All components in the architecture are stand-alone and interact

with each other via HTTP API. For example, any search engine can
be added to our system with minimal effort. This design also adds
flexibility to these components and permits their use in different
applications. For instance, the platform server was also used in the
TREC 2017 RTS track evaluation for collecting judgments of tweets
from the assessors [6]. The CAL component also has a command
line interface through which various simulation experiments can
be conducted.

The platform server is built using Django, a Python web frame-
work. CAL and Search are written in C++. The source code is pub-
licly available1.

3 PLATFORM COMPONENTS & FEATURES
Our implementation of continuous active learning (CAL) is based
on the Baseline Model Implementation (BMI)2, which served as the
baseline method in the TREC Total Recall Track 2015 and 2016 [4, 7].
BMI provides an iterative feedback process and uses a logistic re-
gression classifier trained on relevance judgments from assessors.
BMI uses this classifier to present the assessor with top scoring un-
judged documents in the collection. After each iteration of judging
and re-training, the learning model improves and returns the next
most likely relevant documents to the user. We modified BMI as
follows:
1https://cs.uwaterloo.ca/~m2abuals/code/SIGIR2018/
2http://cormack.uwaterloo.ca/trecvm/

• Paragraph-based: A single paragraph is usually short and can
contain enough material for a document to be assessed as rel-
evant. Assessing the relevance of a document using a single
paragraph can increase the total number of relevant documents
found within a limited time and reduce review effort [10, 11]. Our
CAL implementation retrieves the next likely relevant paragraph
and presents it to the user for assessment, along with the option
to view the full document content.
• Frequency of model retraining: The original algorithm pro-
cesses relevance feedback in batches of size k , where k increases
exponentially. Although having an increasing batch size reduces
computation cost, it can delay the classifier from exploiting the
potential benefits of newer relevance judgments. We made sev-
eral improvements to the original algorithm to allow relevance
feedback to be efficiently processed after each single judgment.
To meet the performance requirements of our modified algo-

rithm, we implemented BMI in C++. In addition to using efficient
data structures and parallel operations, we store all document and
paragraph representations in memory. This enables quick train-
ing and scoring of documents/paragraphs. For the training of our
logistic regression classifier, we used Sofia-ML3. We modified the
Sofia-ML library to remove unnecessary features and the perfor-
mance costs associated with them.

We compared our implementation by simulating the original
BMI algorithm on the TREC 2017 Common Core test collection [1].
With around 1.8 million documents in the collection, the original
3https://code.google.com/archive/p/sofia-ml/

(b) Navigation buttons
To navigate between Search, CAL,
or archive to export all judgments.

(c) Search bar
The title of the document from the
data collection. Users are also able
to specify phrases ("new york") or
require words (+france) in their
search result.

(d) Relevance Indicator
An indicator of the relevance judg-
ment made by the user for the
document. Any document that has
been judged by either Search or
CAL will have this vertical bar in-
dicator.

(a) Topic Description
Clicking on the text will display a
pop-up of the topic statement of
what is considered relevant.

(g) Show full document
Users can view the full document
content by clicking on the search
result. The full document content
will be displayed in a popup.

(f) Judging buttons
Three buttons corresponding to
3-level relevance scale, not rele-
vant, relevant and highly relevant.

(e) Number of Results
The number of search results re-
turned by the search engine. Users
can choose to return 10, 20, 50, or
100 documents per query.

(h) Highlight keywords
Users can highlight keywords by
entering them in the search bar.

(i) Keyboard shortcuts
Users can make their judgments
using any of the pre-defined key-
board shortcuts.

Figure 3: The search engine user interface.

implementation took an average of 294.3 seconds to train the model
and score all the documents. In contrast, our implementation took
an average of 3.5 seconds (1 thread) and 1.6 seconds (8 threads).
It should be noted that the original implementation loads all the
document features from disk every time the classifier is trained,
while our implementation loads it once and keeps it in memory for
subsequent use. This one-time loading cost in our implementation
was 31.1 seconds, which is still significantly faster than the original
implementation.

We also measured the performance of our implementation by
simulating the modified algorithm on the same collection. The train-
ing and scoring of around 30 million paragraphs took an average
of 2.1 seconds after every relevance judgment. Since this process
causes a noticeable delay for users, we immediately present the
next paragraph based on the previous scores while the new scores
are being generated by the model. To reduce latency for the user,
the browser front-end caches the top 10 highest-scoring paragraphs
received from the CAL component. After a user makes a judgment,
we immediately present the user with the next paragraph in the
cache. The cache is flushed and updated every time it receives a
new batch of paragraphs from the CAL component.

The modifications and the improvements we made increased
the responsiveness of our system and removed any perceptible
interface lag.

Figure 3 shows the interfaces of the Search component. We
implemented the search component using Indri [9], but our platform
is designed such that any search engine can be easily integrated. Our

platform interacts with the search engine via HTTP API. Provided
a search query, the platform expects the search engine to respond
with a ranked list of documents with their summaries.

In order to help assessors find relevant documents easily, we
included features that we found helpful as part of our own usage
with a prototype version of our system. The features and their
description are shown in Table 1. Screenshots of the CAL interface
and features are shown in Figures 2 and 3.

4 USER STUDY DETAILS
We conducted a controlled user study to measure the performance
our system. After receiving ethics approval from our university,
we recruited 50 participants. The primary purpose of the study
was to measure user performance with four variants of the system.
A secondary purpose was to collect user feedback regarding the
system and its features.

4.1 Corpus and Topics
We used the 50 NIST topics and the corpus provided by the TREC
2017 Common Core Track [1]. The corpus is The New York Times
Annotated Corpus [8], which contains over 1.8 million news articles.

4.2 System Variants
The participants experienced all variations of our system during
the study. For each variation, the participant spent 1 hour using

Table 1: A list of features participants rated.

Feature Description Example
Keyword Highlighting Keyword search within a document or paragraph Figure 2f, 3h
Judgment Shortcuts Keyboard shortcuts for submitting relevance judgments Figure 2h, 3i
Search Interface Ability to use a search engine to find documents in addition to the learning interface Figure 3
Topic Description Display of topic statement of what is considered relevant Figure 2a, 3a
Undo Judgments Ability to review recent judgments and change judgment Figure 2i
Full Document Content Ability to view a full document rather than merely a paragraph summary Figure 2e
Advance Search For the search engine, the ability to specify phrases ("new york") or require words (+france) Figure 3c

Keyw
ord High

light
ing

Judg
ment

Shor
tcuts

Sear
ch Inter

face

Topi
c De

scrip
tion

Undo
Judg

ment
s

Full
Doc

Cont
ent

Adva
nce S

earch
0

10

20

30

40

50

60

70

P
er
ce
nt
ag
e

Very Useless

Somewhat Useless

Neutral

Somewhat Useful

Very Useful

Figure 4: Percentage of user preference for different system
features.

Table 2: Percentage of participants preferring a given system
variant.

Treatments Percentage of participants
CAL-P 16%
CAL-D 26%

CAL-P&Search 10%
CAL-D&Search 48%

our system to find as many relevant documents as they could for a
given topic. The system variations were:
• CAL-P: CAL component with just paragraph summary. Search
component is not enabled.
• CAL-D: CAL component with paragraph summary and option
to view the full document. Search component is not enabled.
• CAL-P&Search: CAL-P with Search component enabled.
• CAL-D&Search: CAL-D with Search component enabled.

5 DISCUSSION
In this section, we compare the user performance and user feedback
on different variants of our systems. At the conclusion of the study,
we asked participants which system variant they preferred the most.
48% of study participants preferred CAL-D&Search over the more
restrictive variants. Our participants want full control of a highly
interactive system, but we found that performance is highest when
their interactions are limited to producing relevance judgments on
paragraph length excerpts.

Finally, we asked participants for their feedback on each of the
system features in Table 1. We used a 5-point scale to rate each fea-
ture. The results are shown in Figure 4. The keyword highlighting
feature is the most popular among all features, with 86% of users
indicating that it was somewhat useful or very useful.

6 CONCLUSION
In this paper, we described the design of an efficient high-recall
information retrieval system. The system allows for both iterative
relevance feedback and search, and these components can be eas-
ily replaced with different implementations. We found that while
participants preferred a system that gives them the flexibility to
view full documents and interactively search, actual user perfor-
mance was maximized when we limited interaction to submitting
relevance judgments on paragraph length excerpts.

ACKNOWLEDGMENTS
This work was supported in part by the Natural Sciences and En-
gineering Research Council of Canada (Grants CRDPJ 468812-14,
RGPIN-2017-04239, and RGPIN-2014-03642), in part by a Google
Founders’ Award, and in part by the University of Waterloo.

REFERENCES
[1] James Allan, Evangelos Kanoulas, Dan Li, Christophe Van Gysel, Donna Harman,

and Ellen Voorhees. 2017. TREC 2017 Common Core Track Overview. In TREC.
[2] Gordon VCormack andMaura RGrossman. 2014. Evaluation of machine-learning

protocols for technology-assisted review in electronic discovery. In SIGIR.
[3] Gordon V. Cormack and Maura R. Grossman. 2015. Autonomy and Reliabil-

ity of Continuous Active Learning for Technology-Assisted Review. CoRR
abs/1504.06868 (2015).

[4] Maura R Grossman, Gordon V Cormack, and Adam Roegiest. 2016. TREC 2016
Total Recall Track Overview. In TREC.

[5] Maura R Grossman, Gordon V Cormack, and Adam Roegiest. 2017. Automatic
and Semi-Automatic Document Selection for Technology-Assisted Review. In
SIGIR.

[6] Jimmy Lin, Salman Mohammed, Royal Sequiera, Luchen Tan, Nimesh Ghelani,
Mustafa Abualsaud, Richard McCreadie, Dmitrijs Milajevs, and Ellen Voorhees.
2017. Overview of the TREC 2017 Real-Time Summarization Track. In TREC.

[7] Adam Roegiest, Gordon V Cormack, Maura R Grossman, and C. L. A. Clarke.
2015. TREC 2015 Total Recall Track Overview. In TREC.

[8] Evan Sandhaus. 2008. The New York Times Annotated Corpus. (October 2008).
LDC Catalog No.: LDC2008T19, https://catalog.ldc.upenn.edu/ldc2008t19.

[9] Trevor Strohman, Donald Metzler, Howard Turtle, andW Bruce Croft. 2005. Indri:
A language model-based search engine for complex queries. In Proceedings of the
International Conference on Intelligent Analysis, Vol. 2. Amherst, MA, USA, 2–6.

[10] Haotian Zhang,Mustafa Abualsaud, NimeshGhelani, AngshumanGhosh,MarkD.
Smucker, Gordon V. Cormack, and Maura R. Grossman. 2017. UWaterlooMDS at
the TREC 2017 Common Core Track. In TREC.

[11] Haotian Zhang, Gordon V Cormack, Maura R Grossman, and Mark D Smucker.
2018. Evaluating Sentence-Level Relevance Feedback for High-Recall Information
Retrieval. arXiv (2018).

https://catalog.ldc.upenn.edu/ldc2008t19

	Abstract
	1 Introduction
	2 System architecture
	3 Platform components & features
	4 User study details
	4.1 Corpus and Topics
	4.2 System Variants

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

